
DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 1

Supporting
Separation of Roles

in the SmartMDSD-Toolchain:
Three Examples of Integrated DSLs

Christian Schlegel
Alex Lotz
Matthias Lutz
Dennis Stampfer

Computer Science Department
University of Applied Sciences Ulm, Germany

http://www.servicerobotik-ulm.de/

http://www.servicerobotik-ulm.de/
http://www.servicerobotik-ulm.de/
http://www.servicerobotik-ulm.de/

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 2

Butler Scenario

Intralogistics Scenario

Runtime Reconfiguration

RoboCup@Home Student Team

• Coffee Delivery
• Clean-up table
• Object Recognition
• States of objects

• Which coffee machine? Which velocity?
• Stacking cups and waste separation
• Active information-driven object recognition
• full or empty? Ready or problem?

Variability Management in the Lifecycle
Design-Time Software Variability and Run-Time Reconfiguration

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 3

SmartMDSD
(service oriented
 component model)
• Meta-Model
• Toolchain

SmartSoft
(implementation)
• CORBA / SmartSoft
• ACE / SmartSoft
• Linux, Windows, etc.

SmartTCL
(Task Coordination Language)

VML
(Variability Modeling Language)

Meta-Model

Real robot in real world

Eclipse-Toolchain
• component

 developer

• software
 component
• execution

 container

Eclipse-Toolchain
• system integrator
• deployment

Variability Management in the Lifecycle
Design-Time Software Variability and Run-Time Reconfiguration

Domain Specific Languages

DSL Communication Object

DSL Parameter

DSL Documentation of
 Components

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 4

DSLs: Lessons Learned

Guide DSLs by a domain and its requirements: achieve Separation of Roles and support Separation of Roles
• early agreement (via modeling) on contracts between building blocks and responsibilities (service definitions)
• modifications trigger the need for agreements: ensure obligatory workflows (assigned roles / responsibilities / privileges)
• always up-to-date documentation (model [including documents] is documentation instead of document driven approach)

Approach: MDSD (model-driven software development) supported by integrated DSLs (domain specific languages)

Lessons Learned:

• be user-focused: simplicity, compactness, specific for a particular user need / user role
• better have separated and specific DSLs instead of trying to merge everything into a single DSL
• graphical modeling versus textual DSL: offer whatever is most appropriate for a role and task

• support different views:
• assign user-role specific privileges (see example 2 / DSL “parameter”)

• needs to be integrated into workflow and tools:
• do not come up with just another isolated DSL
• DSL must fit seamlessly into an overall workflow (e.g. easy and seamless access to textual modeling from

within graphical models => do not require manually opening a separated text document)
• seamless access from different DSLs to information shared between models: no matter whether it is from

within graphical or textual models

Selected examples in this talk (fully integrated within the SmartMDSD toolchain):
• DSL 1: immediate use of entities and delayed transformation (part by part as needed) into platform implementation
• DSL 2: textual model accessible from graphical model (stepwise refinement, different views, tool integration)
• DSL 3: graphical models are used by textual models (stepwise annotations)

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 5

Example 1: DSL „Communication Object“
immediate use of entities and delayed transformation (part by part as needed) into platform implementation

entities are modeled textually (Xtext integrated DSL) and are imported into and referenced from the graphical
model (UML)

The following data types are available for attributes of the communication object:

• Boolean
• Double, Float
• Int8, Int16, Int32, Int64
• UInt8, UInt16, UInt32, UInt64
• String
• [N] – Array of any of the previous types. N can be an integer denoting the

number of elements or * for a flexible list
• CommObjectRef(NAME) – to indicate a nested communication object
• StructRef(NAME) – to indicate a nested Struct
• EnumRef(NAME) – to indicate an enumeration usage

Purpose:
• achieve composability of services in order to support reuse of software components

Requirements:
• describe (model) entities (data structures) once and consistently reuse those entities

as often as possible
• you must be able to work with these entities although e.g. the target platform and

target middleware is not yet decided

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 6

Example 1: DSL „Communication Object“

Approach: describe “data structures” independently from their implementation, i.e.
• models must be implementable with different kinds of middleware
• the part relevant to a component developer must be transformed early into the used programming language
• late binding of middleware to execution must be possible seamlessly

Xpand

DSL

Consortium Level
Agreement

Generator

Component Developer

internals of tooling:
provided by Framework Developer

getter /setter

Framework (Marshalling)

• stable and early usable C++ object
• generated according to DSL

• not visible to user
• generated according to

selected middleware

immediate use of entities and
delayed transformation (part by part as needed) into platform implementation

vi
si

b
le

h

id
d

en

?

time line

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 7

Example 2: DSL „Parameter“

Design-Time
System
Integrator

Design-Time
component developer

Design-Time
consortium level agreement

Run-Time
Robot

Run-time
access via
Parameter Pattern
(Comm. Pattern /
Component Model)

<values>: can be referenced and enriched,
<name>, <type>: cannot be modified

DSL

stepwise refinement binds more and more variability

Datatypes:
Boolean, Double, Float, Int8,
Int16, Int32, Int64, UInt8,
UInt16, UInt32, UInt64, String,
Arrays, Enumerations

DSL DSL

textual model accessible from graphical model (stepwise refinement, different views, tool integration)

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 8

Example 3: DSL „Documentation“

Current State:
• from stepwise annotations in models to a

complete document
• add human-centered prosa / docu / explanations

Future Work:
human readable model annotations will be presented
at the appropriate views within the toolchain
(do not read a separate WIKI)

Papyrus / UML-Profile DSL

Output: Complete Document

graphical models are used by textual models (stepwise annotations)

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 9

Example 3: DSL „Documentation“

Current State:
• from stepwise annotations in models to a

complete document
• add human-centered prosa / docu / explanations

Future Work:
human readable model annotations will be presented
at the appropriate views within the toolchain
(do not read a separate WIKI)

Papyrus / UML-Profile DSL

Output: Complete Document

graphical models are used by textual models (stepwise annotations)

Textual models reference graphical models:

Workflow:
• component developer models component hull as graphical model
• someone else (typically another role, e.g. technical writer) opens document editor and provides the documentation for the

“outside view” of this component
• he is being assisted in this job by the DSL as the auto completion mechanism suggests those port, states etc. that still

need to be documented
• behind the scenes, the editor refers to the graphical model in order to come up with its suggestions
• behind the scene, the very same mechanism of referencing the graphical component model prevents from modifying

the component hull from within the role of the technical writer
• the generator composes out of the text elements of the documentation, the models (graphical model of the component,

used communication objects, used parameters etc.) the document (currently, the final document is html with Doxygen as
intermediate representation)

• the html documentation describing the black box view of a component does not only contain the content expressed
via the documentation DSL, but also all relevant information gathered from the other models

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 10

This video demonstrates the modeling of a parameter using the SmartMDSD Toolchain.

The parameter represents a configurable maximum velocity of a robot. This parameter can later be
instantiated by components. The maximum speed can then be configured through the parameter service.

http://youtu.be/2U4KxSgwtqY

SmartMDSD Toolchain: Parameter Definition

Purpose: (Example DSL 2)
• see how a parameter for later component configuration (system integrator at design

time, robot at run-time) is being defined
• please go to 00:34

http://youtu.be/2U4KxSgwtqY

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 11

SmartMDSD Toolchain: Component Development

This video demonstrates the modeling and implementation of a component using the SmartMDSD
toolchain. It thereby illustrates how to use the modeled parameter from within a component.
The component receives laser scans. A simple obstacle avoidance algorithm outputs values for speed and
direction. The component then limits the maximum speed according to a variation point (parameter "v_x",
modeled in the previous video) before providing the navigation commands through one of its services.
This parameter "v_x" can be configured during runtime of the component through its parameter service.

http://youtu.be/chyRCu4FCbs

Purpose: (Example DSL 1)
• see how a communication object modeled via the Xtext integrated DSL is imported

into the graphical UML model and how it is then being referenced
• please go to 01:50

http://youtu.be/chyRCu4FCbs

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 12

SmartMDSD Toolchain:

System Configuration and Deployment

http://youtu.be/y-S33qaeNfI

This video demonstrates the creation of system configuration and deployment model using the SmartMDSD
toolchain.
The scenario: a robot shall drive and avoid obstacles. It reuses the (existing) components
SmartLaserObstacleAvoid (see previous screencast), SmartLaserLMS200Server (laser ranger) and
SmartPioneerBaseServer (robot). The system configuration model models the connection and configuration
of components. The deployment model models the distribution of components on hardware.
According to system level needs, we restrict the maximum allowed velocity from 1000 mm/s (as is
maximum capability of the component) to 600 mm/s (as is considered maximum for this application).

Purpose: (Example DSL 2)
• see how a predefined parameter is being used from within a component and how the

parameter can be given an initial value (maximum velocity 1000 mm/s)
• please go to 03.05

• later on, you can see the source code illustrating the access to the parameter
• please go to 05:18 – 05:45

http://youtu.be/y-S33qaeNfI
http://youtu.be/y-S33qaeNfI
http://youtu.be/y-S33qaeNfI

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 13

http://youtu.be/OZcC4ipt_BM

This video demonstrates the deployment and execution of an application developed using the SmartMDSD
toolchain.
The application (laser obstacle avoidance from a previous video) is deployed using SSH. A remote session on
the robot is established in order to run it.
We show how we access the parameter during run-time. The robot will first drive with a maximum velocity
of 600m/s (as has been configured as system configuration). Later, SmartTCL is used to change the
maximum velocity of the component to 200 and back to 600 every 5s via the parameter service and the
explicated variation point v_x.

SmartMDSD Toolchain:

Deployment and Run-Time Variability

Purpose: (Example DSL 2)
• see how the component level value (maximum velocity) is being further refined due

to system level requirements (reducing the maximum allowed velocity to 600 mm/s)
• please go to 04:35

• later on, you can see how the run-time task nets adjust the parameter within the

given limits according to the current situation. Of course, the example is very simple
in order to illustrate the seamless management across the different roles and across
design-time / run-time of a parameter within the SmartMDSD toolchain.

http://youtu.be/OZcC4ipt_BM

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 14

Video: Real-World example

http://youtu.be/DjjNUPpj36E

The scenario shows the service robots "Kate" and "Larry" acting as butler. Kate takes orders from persons
and hands over parts to Larry. While Kate makes a cup of coffee, Larry fetches the sugar dispenser from
within a closed sideboard.

http://youtu.be/DjjNUPpj36E

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 15

• Portal

– http://www.servicerobotik-ulm.de/

• Paper and Talks

– http://www.servicerobotik-ulm.de/drupal/?q=node/15

• Videos

– http://youtube.com/user/roboticsathsulm

• Software

– http://www.servicerobotik-ulm.de/drupal/?q=node/7

Links

http://www.servicerobotik-ulm.de/
http://www.servicerobotik-ulm.de/
http://www.servicerobotik-ulm.de/
http://www.zafh-servicerobotik.de/
http://www.servicerobotik-ulm.de/drupal/?q=node/15
http://www.servicerobotik-ulm.de/drupal/?q=node/15
http://www.servicerobotik-ulm.de/drupal/?q=node/15
http://servicerobotik.hs-weingarten.de/publikationen.php
http://youtube.com/user/roboticsathsulm
http://youtube.com/user/roboticshswgt
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://servicerobotik.hs-weingarten.de/en/teachingbox.php

