
DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 1

Supporting
Separation of Roles

in the SmartMDSD-Toolchain:
Three Examples of Integrated DSLs

Christian Schlegel
Alex Lotz
Matthias Lutz
Dennis Stampfer

Computer Science Department
University of Applied Sciences Ulm, Germany

http://www.servicerobotik-ulm.de/

http://www.servicerobotik-ulm.de/
http://www.servicerobotik-ulm.de/
http://www.servicerobotik-ulm.de/

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 2

Butler Scenario

Intralogistics Scenario

Runtime Reconfiguration

RoboCup@Home Student Team

ÅCoffee Delivery
ÅClean-up table
ÅObject Recognition
ÅStates of objects

ÅWhich coffee machine? Which velocity?
ÅStacking cups and waste separation
ÅActive information-driven object recognition
Åfull or empty? Ready or problem?

Variability Management in the Lifecycle
Design-Time Software Variability and Run-Time Reconfiguration

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 3

SmartMDSD
(service oriented
 component model)
Å Meta-Model
Å Toolchain

SmartSoft
(implementation)
ÅCORBA / SmartSoft
ÅACE / SmartSoft
ÅLinux, Windows, etc.

SmartTCL
(Task Coordination Language)

VML
(Variability Modeling Language)

Meta-Model

Real robot in real world

Eclipse-Toolchain
Å component

 developer

Åsoftware
 component
Å execution

 container

Eclipse-Toolchain
Åsystem integrator
Ådeployment

Variability Management in the Lifecycle
Design-Time Software Variability and Run-Time Reconfiguration

Domain Specific Languages

DSL Communication Object

DSL Parameter

DSL Documentation of
 Components

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 4

DSLs: Lessons Learned

Guide DSLs by a domain and its requirements: achieve Separation of Roles and support Separation of Roles
Åearly agreement (via modeling) on contracts between building blocks and responsibilities (service definitions)
Åmodifications trigger the need for agreements: ensure obligatory workflows (assigned roles / responsibilities / privileges)
Åalways up-to-date documentation (model [including documents] is documentation instead of document driven approach)

Approach: MDSD (model-driven software development) supported by integrated DSLs (domain specific languages)

Lessons Learned:

Åbe user-focused: simplicity, compactness, specific for a particular user need / user role
Åbetter have separated and specific DSLs instead of trying to merge everything into a single DSL
Ågraphical modeling versus textual DSL: offer whatever is most appropriate for a role and task

Åsupport different views:
Åassign user-ǊƻƭŜ ǎǇŜŎƛŦƛŎ ǇǊƛǾƛƭŜƎŜǎ όǎŜŜ ŜȄŀƳǇƭŜ н κ 5{[άǇŀǊŀƳŜǘŜǊέύ

Åneeds to be integrated into workflow and tools:
Ådo not come up with just another isolated DSL
ÅDSL must fit seamlessly into an overall workflow (e.g. easy and seamless access to textual modeling from

within graphical models => do not require manually opening a separated text document)
Åseamless access from different DSLs to information shared between models: no matter whether it is from

within graphical or textual models

Selected examples in this talk (fully integrated within the SmartMDSD toolchain):
ÅDSL 1: immediate use of entities and delayed transformation (part by part as needed) into platform implementation
ÅDSL 2: textual model accessible from graphical model (stepwise refinement, different views, tool integration)
ÅDSL 3: graphical models are used by textual models (stepwise annotations)

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 5

Example 1: DSL ĂCommunication Objectñ
immediate use of entities and delayed transformation (part by part as needed) into platform implementation

entities are modeled textually (Xtext integrated DSL) and are imported into and referenced from the graphical
model (UML)

The following data types are available for attributes of the communication object:

ÅBoolean
ÅDouble, Float
ÅInt8, Int16, Int32, Int64
ÅUInt8, UInt16, UInt32, UInt64
ÅString
Å[N] ς Array of any of the previous types. N can be an integer denoting the

number of elements or * for a flexible list
ÅCommObjectRef(NAME) ς to indicate a nested communication object
ÅStructRef(NAME) ς to indicate a nested Struct
ÅEnumRef(NAME) ς to indicate an enumeration usage

Purpose:
Åachieve composability of services in order to support reuse of software components

Requirements:
Ådescribe (model) entities (data structures) once and consistently reuse those entities

as often as possible
Åyou must be able to work with these entities although e.g. the target platform and

target middleware is not yet decided

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 6

Example 1: DSL ĂCommunication Objectñ

ApproachΥ ŘŜǎŎǊƛōŜ άŘŀǘŀ ǎǘǊǳŎǘǳǊŜǎέ ƛƴŘŜǇŜƴŘŜƴǘƭȅ ŦǊƻƳ ǘƘŜƛǊ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴΣ ƛΦŜΦ
Åmodels must be implementable with different kinds of middleware
Åthe part relevant to a component developer must be transformed early into the used programming language
Ålate binding of middleware to execution must be possible seamlessly

Xpand

DSL

Consortium Level
Agreement

Generator

Component Developer

internals of tooling:
provided by Framework Developer

getter /setter

Framework (Marshalling)

Åstable and early usable C++ object
Ågenerated according to DSL

Ånot visible to user
Ågenerated according to

selected middleware

immediate use of entities and
delayed transformation (part by part as needed) into platform implementation

vi
s
ib

le

h
id

d
e

n ?

time line

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 7

Example 2: DSL ĂParameterñ

Design-Time
System
Integrator

Design-Time
component developer

Design-Time
consortium level agreement

Run-Time
Robot

Run-time
access via
Parameter Pattern
(Comm. Pattern /
Component Model)

<values>: can be referenced and enriched,
<name>, <type>: cannot be modified

DSL

stepwise refinement binds more and more variability

Datatypes:
Boolean, Double, Float, Int8,
Int16, Int32, Int64, UInt8,
UInt16, UInt32, UInt64, String,
Arrays, Enumerations

DSL DSL

textual model accessible from graphical model (stepwise refinement, different views, tool integration)

DSLrob 2014, Workshop, Bergamo, 20th Oct. 2014 8

Example 3: DSL ĂDocumentationñ

Current State:
Åfrom stepwise annotations in models to a

complete document
Åadd human-centered prosa / docu / explanations

Future Work:
human readable model annotations will be presented
at the appropriate views within the toolchain
(do not read a separate WIKI)

Papyrus / UML-Profile DSL

Output: Complete Document

graphical models are used by textual models (stepwise annotations)

