
Whitepaper: Gateway Components for

Communication between ROS and SmartSoft

Alex Lotz

October 7, 2011

1 Introduction

There are several different ways of using Robot Operating System (ROS)1 and
SmartSoft components together (resp. to communicate between them). From
a technical point of view, one can either port ROS components to SmartSoft
or port SmartSoft components into ROS as a stack. Both solutions have the
disadvantage to maintain two branches in parallel. Furthermore, to port all
components from one robotics framework to another would mean to fundamen-
tally redesign all components from one of the frameworks. This is very time
consuming, error prone and thus not practicable.

ROS SmartSoft
ROS-SmartSoft Gateway

glue logic
...

convert
CommObjROS Msg.

...

ROS
Comp.

Smart
Soft

Comp.

Figure 1: Gateway Component between ROS and SmartSoft

Another approach, to bring the two worlds together, is to build gateways
(see fig. 1), which allow to communicate between components running in ROS
and components in SmartSoft. The advantage of this approach is the full
decoupling of semantics and syntax of the two frameworks. The glue between the
frameworks is implemented inside the gateway components. The disadvantage
of this approach is the additional communication overhead (resp. the jitter)
caused by the gateways itself, which however is linear and can be taken into
account at system design.

1http://www.ros.org/wiki/

1

The gateway approach leads to the following design decisions. First, all
components implemented in one of the two frameworks remain untouched and
communicate with components from another framework exactly in the same
way as they did before. Second, the mapping of the communication details
and semantics is implemented inside of specific gateway components. It is more
reasonable to implement several gateway components instead of a single gateway
implementing all mappings for all potential communication ports. The reasons
are to prevent a single point of failure and to provide better scalability and
maintainability of gateway solutions.

The solution for the gateway approach leads to the following challenges.
First, the two different building processes must be combined in such a way that
it becomes possible to build (create and compile) gateway components, which
uses both types of communication mechanisms (those from ROS and those from
SmartSoft). This issue is described in section 2. The second challenge is to
combine the usage and the mapping of the two different types of communication
ports inside the gateway components. This issue is described in section 3.

2 Combining the building processes of ROS and
SmartSoft

As stated before in section 1, the gateway approach decouples the sphere of in-
fluence between components created in ROS and components created in Smart-
Soft. Thus, the only components, which must be created for both frameworks,
are the gateway components. To be able to create such gateway components,
two technical issues must be solved first.

2.1 Technical challenges

The first problem is, that the folder structure in ROS is individual for each of the
ROS stacks, whereas in SmartSoft the locations for components, communica-
tion objects, utilities, header files and libraries are predefined and stable. This
makes it possible to use generic makefiles in SmartSoft, whereas in ROS the
locations for header files and libraries are resolved by the tool rospack, which
in turn uses the bash environment modified by ROS scripts. In particular, the
dependencies of a ROS component to other stacks in ROS is defined inside of the
manifest.xml file. This file is used by cmake to generate corresponding make-
files (e.g. for a g++ compiler). Instead in SmartSoft a more straightforward
way is used, where a makefile simply uses the location $SMART_ROOT/include

as include path and $SMART_ROOT/lib as library path.
The second problem is the creation procedure of components in ROS and in

SmartSoft. In ROS, a component is created by using the tool roscreate-pkg.
Thereby the files manifest.xml (including the dependencies to particular stacks
in ROS) and CMakeLists.txt are created. In SmartSoft, a component is best
created by using the SmartSoft MDSD Toolchain. Thereby the dependencies
are automatically generated by the toolchain.

2

2.2 Solution for the combined building process

In SmartSoft, components and communication objects are separated in cor-
responding locations:

Components: $SMART_ROOT/src/components

Communication Objects: $SMART_ROOT/src/interfaceClasses

Whereas in ROS, a component is found by using the environment variable
ROS PACKAGE PATH. To be able to use a gateway component in ROS and Smart-
Soft together we create the component inside the components directory of
SmartSoft and attach this path to the ROS package path. Thus the first
step is to setup the ROS package path to know the location of components in
SmartSoft:

cd $HOME

echo "export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:\

$SMART_ROOT/src/components" >> .bashrc

This step must be done once, after ROS and SmartSoft are first installed
on a system. Now for each new gateway we create a new ROS package2:

cd $SMART_ROOT/src/components

roscreate-pkg <GatewayName> roscpp tf [further ROS depends.]

The parameter GatewayName is individual for each gateway component (e.g.
SmartROSBaseGateway). In addition to the two packages roscpp and tf further
dependency packages can be specified. This is the minimal definition for a new
component in ROS. Now the SmartSoft MDSD Toolchain can be used to
create a component body for a SmartSoft component.

After creating a SmartSoft hull for the gateway component, the library de-
pendencies of ROS must be defined. Thereto, a predefined bash script generates
a makefile, which contains all compiler and linker flags for the ROS dependen-
cies. Again, in ROS all dependencies are stored inside the manifest.xml file of
the gateway-component project. The script can be executed as follows:

cd $SMART_ROOT/src/utility/smartROSbridge

./generate_ros_dependencies.sh <GatewayName>

The script not only generates the top level library dependencies but also the
recursive dependencies of these libraries and so on. At the end, the information
is stored in the file ros.mk, which in turn is stored in the directory:

$SMART_ROOT/src/components/<GatewayName>/src

Now the ROS specific makefile parameters can be included into the Smart-
Soft Makefile of the corresponding gateway component:

2http://www.ros.org/wiki/ROS/Tutorials/CreatingPackage

3

roscd <GatewayName>

cd src

cat ros.mk

vim Makefile

The Makefile in SmartSoft provides the variable USER CPP CFLAGS for
user defined compiler flags and the variable USER CPP LFLAGS for user defined
linker flags:

...

USER_CPP_CFLAGS =

USER_CPP_LFLAGS =

...

This part can now be extended by an include of ROS specific compiler and
linker flags (currently generated by the script above):

...

ifneq "$(wildcard ros.mk)" ""

include ros.mk

else

$(error "File ’ros.mk’ NOT found! run \

./gen_ros_depends.sh in bash console!")

endif

USER_CPP_CFLAGS = $(ROS_CXX_FLAGS)

USER_CPP_LFLAGS = $(ROS_LD_FLAGS)

...

That’s it, we now can compile the gateway by simply typing:

roscd <GatewayName>

cd src

make

Seamlessly, the build procedure of the SmartSoft MDSD Toolchain can be
used without any further modifications.

3 Glue Logic

Once we are able to compile a component consisting communication ports of
ROS and SmartSoft the next challenge arises. As a matter of fact, neither
the messages in ROS nor the communication objects in SmartSoft are stan-
dardized. As a consequence, there is no generic mapping possible even between
similar data types. For example, ROS provides the message Odometry, which is
quite similar to the communication object BaseState in SmartSoft. However,
there are differences in internal structures, variable names, data types, physical

4

units (resp. meaning of the value) and expected value ranges. As long as none
of the two frameworks follows a standard, the mapping of the communicated
data types will remain handwritten and will be highly affected by changes in
both frameworks. Nevertheless, one can reduce the proliferation of mapping
modifications and their influence on the rest of the system, by outsourcing the
mapping to a separate library. This at least decouples modifications in ROS
from those in SmartSoft and vice versa.

After implementing the mapping of required communication data types in a
separate library a gateway component can be designed. Fortunately, there is a
recurring structure in most of the ROS-SmartSoft gateway components. The
main parts of it are described in the following.

• SmartSoft Communication Ports of the gateway component can be de-
fined and configured by using the SmartSoft MDSD Toolchain.

• An instance of a ROS Node (required by ROS communication ports) can
be defined in <GatewayName>Core.hh.

• The best place to define Communication Ports of ROS is the header file
<GatewayName>Core.hh, initialization can be implemented in the source
file CompHandler.cc.

• Each gateway needs one specific task (the ROS SpinTask) to handle all
ROS middleware events by calling the spin method of the local ROS
Node.

• Finally, for each ros::Subscriber a callback method must be imple-
mented which handles incoming ros messages.

5

